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ABSTRACT

Content based music retrieval opens up large collections,
both for the general public and music scholars. It basically
enables the user to find (groups of) similar melodies, thus
facilitating musicological research of many kinds. We
present a graph spectral approach, new to the music re-
trieval field, in which melodies are represented as graphs,
based on the intervals between the notes they are com-
posed of. These graphs are then indexed into a database
using their laplacian spectra as a feature vector. This lapla-
cian spectrum is known to be very informative about the
graph, and is therefore a good representative of the orig-
inal melody. Consequently, range searching around the
query spectrum returns similar melodies.

We present an experimental evaluation of this approach,
together with a comparison with two known retrieval tech-
niques. On our test corpus, a subset of a well documented
and annotated collection of Dutch folk songs, this eval-
uation demonstrates the effectiveness of the overall ap-
proach.

1 INTRODUCTION

Singing songs has always been an important way of pass-
ing on stories and expressing emotions, religious beliefs
or social values. Most of these folk songs were trans-
ferred orally, often significantly changing over time and
location. This resulted in the existence of many versions
of the same songs, often displaying considerable varia-
tions. In Onder de groene linde, a collection of Dutch folk
songs has been assembled by Ate Doornbosch, a Dutch
radio broadcaster and researcher [1]. By recording many
singers in the countryside during a period of over three
decades, he captured this cultural heritage counting more
than 7300 songs on tape. A large part of these melodies
and songs has now been transcribed to music notation.
The collection is becoming available to the general pub-
lic and research community [7]. Content-based music re-
trieval opens up this great resource in such a way that both
audiences can access it better. Through music information
retrieval, songs belonging to the same class of songs can
be grouped, or songs with only slight variations can be
found. It can help identify the composer of a song, or as-
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sist in any other scholarly musicological task.
We have three main contributions in this paper. Firstly,

we introduce a new approach to music retrieval in which
the music is represented as graphs, and the matching is
based on specific features of these graphs. Our graph rep-
resentation encodes the interval structure of a melody; it
is a global time-independent signature of the melody, dis-
playing the network of connections that exists between the
pitch classes.

Secondly, we introduce our indexing approach, which
is new to music retrieval. To compute similarity between
melodies, an algebraic structure is associated to each graph:
an n×n matrix, with n equal to the number of vertices in
the graph.

Thirdly, we evaluate our method on a test corpus of
Dutch folk songs. In this evaluation, we compare our
method to two other methods: one approach specifically
targeted towards folk song collections, and one approach
using a time-independent structural approach as well. In
this comparison, our method outperforms the other meth-
ods in terms of three well-known performance measures,
namely, nearest neighbor, first and second tier.

2 RELATED WORK

Melodic similarity has been investigated by many authors
from very different points of view, using different kind of
song collections as dataset.

One of the most complete and recent studies has been
performed by Müllensiefen and Frieler, who explored the
concept melodic similarity within a collection of folk songs
[10]. Using a collection of 577 Luxembourg folk songs,
they empirically established an optimal similarity measure
(the Opti3) that combines several known methods into one
unifying expression. Out of 50 implemented musical sim-
ilarity measures, taking into account all sorts of musical
features, a weighted combination of methods was cho-
sen to create one measure that best reflected the results
of an extensive human listening experiment. Since their
approach is specifically targeted towards a collection of
folk songs, we compare it to our method as well.

Another example of a representation/matching/index-
ing paradigm is the weighted point set on which the Earth
Mover’s Distance or Proportional Transportation Distance
can be applied. This kind of approach has been applied to
test music similarity as well [13]. The notes of a melody



are encoded as weighted points in a two-dimensional space
where pitch and onset time are the axes; the duration of a
note determines its weight. Similarity between two melodies
can now be computed by measuring the effort it takes to
transform one weighted pointset into the other.

3 REPRESENTATION

Our goal is to provide a sufficiently abstract representa-
tion of a melodic line that actually makes sense from a
musical point of view. With this aim, we start looking
just at melodies, not considering the rhythm. Melodies
are generally studied from a pitch sequence/contour point
of view. Our approach is different: we take as a starting
point the interval structure, by which we mean the net-
work of connections between pitches. We remark that
melodies use only a subset of all possible connections,
and with different frequencies. To model such relation-
ships we use graphs, which have various and significant
applications throughout mathematics, computer science,
and physics. As such, the graph is a projection of the
time-dependent concept of melody to a time-independent
concept of intervallic structure. The next level of abstrac-
tion is to leave out pitch class information so that only
the “interval connectivity” of the melody remains, and this
means that certain operations such as inversion, transpo-
sition, retrogradation, other kind of permutations in the
pitch class set and (some) shifting of fragments does not
affect the graph. In this perspective what we are modelling
is a global, time-independent signature of the melody [11],
[8]. Melodies that display a similar interval behaviour
have similar graphs, for example melodies in which there
are one or two central notes (with many connections) and
a number of peripheral notes (few connections).

Let M be a melodic sequence of length m = |M | and
consider the sequence of pitches {pj}j∈I , {I = 1, ...,m}.
Then let V = Z12 be the (metric) space of pitches, or
pitch classes, in the 12-tone system. We define the graph
G with vertex set VG = V and edge set whose elements
are the edges aj such that

aj :
{

pj → pj+1 for every couple (pj , pj+1) ⊆ M
pm → p1 for the couple (pm, p1)

where j = 1, . . . ,m− 1 (see also [2] and [5]).
The arrow am : pm → p1 does not represent an actual

interval in the melody but it has been added for symmetry
reasons and in order to take into account the relationship
between the last and the first note as well, which otherwise
would not have been reflected in the model.

4 INDEXING

The graph representation described up to now is a geo-
metric one. In order to allow computations with this rep-
resentation, we need to associate an algebraic structure to
it. The most common algebraic structure to represent a
graph is the adjacency matrix.

The adjacency matrix A(G) of a graph G is a square
matrix of size equal to the order of the graph and where
the entry (i, j) represents the number of oriented edges
from vertex i to vertex j. This adjacency matrix therefore
contains all the information to reconstruct the connectivity
of the graph. A matrix closely related to the adjacency
matrix is the laplacian matrix L(G), computed as L(G) =
D(G)−A(G), where D(G) is the degree matrix of G. The
degree matrix is also a square matrix of size equal to the
order of the graph, but all values are zero except for those
on the main diagonal. Here, the entry (i, i) represents the
number of outgoing edges of vertex i.

Given the laplacian matrix of a melody graph, the ques-
tion remains how to compute the similarity to another melo-
dy. For this purpose, we first compute the eigenvalues
of the laplacian matrix and sort them by magnitude. 1

Hereby, we obtain the laplacian spectrum of the graph,
that is known to reflect a number of important proper-
ties of the graph. These properties include the diame-
ter (related to the second smallest eigenvalue), mean dis-
tance, minimum degree and algebraic connectivity. Fur-
thermore, the spectrum is invariant under permutations of
the matrix (i.e. swapping columns or rows). Together
with the absence of pitch information stored in the matrix,
this makes the representation invariant under transposi-
tions and note permutation. This is an important property,
because as pointed out before, our concept of similarity
is also independent from note permutation and transposi-
tion.
Our main motivation for encoding the topology of a graph
using the laplacian matrix comes from the fact that lapla-
cian matrices are more natural, more important, and more
informative than other matrices about the input graphs [9].
Previously, Godsil and McKay [4] and more recently Hae-
mers and Spence [6] have also shown that the laplacian
matrix has more representational power than the adjacency
matrix, in terms of resulting in fewer cospectral graphs.
Recall that two graphs are called cospectral (or, isospec-
tral) if they have the same eigenvalues.

Given a query graph and a large database, the objective
of an indexing algorithm is to efficiently retrieve a small
set of candidate matches, that share topological similarity
with the query. As pointed out, we encode the topology of
a graph through its laplacian spectrum, which is used as
a signature for the database object. This spectrum can be
seen as a point in a high dimensional space. To compute
similarity between two graphs, we compute the Euclidean
distance between their signatures, which is inversely pro-
portional to the structural similarity of the graphs. There-
fore, for a given query, retrieving its similar graphs can be
reduced to a nearest neighbor search among a set of points.
A set of candidate matches can now be found without hav-
ing to inspect the entire database. For more details on this
indexing strategy, the reader is referred to [3].

1 Since the graphs are directed, the laplacian matrix is not necessar-
ily symmetric. Consequently, some of the eigenvalues may be complex
numbers and there exist multiple strategies for sorting these. As in [12],
we sort these eigenvalues by modulus.



CRITERIA NN 1st tier 2nd tier
LAPLACIAN 66% 44% 63%
ADJACENCY 58% 28% 48%
OPTI3 40% 39% 56%
EMD 64% 33% 50%
PTD 64% 30% 46%

Table 1. Nearest neighbour (NN), first tier and second tier
results on the Onder de groene linde collection, computed
using Laplacian spectra (L) Adjacency spectra (A) of the
graphs. The results are compared to the methods Opti3,
EMD and PTD.

5 EXPERIMENTS

In “Onder de groene linde”, a large number of Dutch folk
songs is preserved. This collection consists of more than
7300 songs recorded on tape. These songs are documented
and annotated in great detail, and illustrated by sheet mu-
sic examples. We experimented on a subset of this re-
source, that consists of 141 songs, of which we used the
first phrase. These songs have been classified in 18 classes
or melody groups, that relate to the concept of melody
norms.

At the Meertens Institute (a research institute for Dutch
language and culture in Amsterdam) the concept of melody
norm 2 is used to group historically or “genetically” re-
lated, orally transmitted melodies. Because the contents
of folk song collections such as OGL are highly frag-
mented, it is impossible to trace back the history of melo-
dies and to find all variants that are derived from a com-
mon ‘ancestor’ melody. What can be done, is to find re-
lated groups of melodies within the collection, based on
both melodic similarity and available meta data, and link
them to melody norms. A search engine would speed
up this process of relating melodies considerably. As a
ground truth in our experiments, we used a classification
of the melodies into melody groups, that serve as candi-
dates for the melody norms to be assigned in a later stage.

For all the melodies in our test corpus, a graph has been
constructed as described in Section 3. We evaluated re-
trieval performance with these graphs using both the ad-
jacency and the laplacian spectra. The results are sum-
marised in Table 1. For both experiments, we computed
some retrieval statistics, namely nearest neighbor, first and
second tiers, each averaged over all possible queries. These
are frequently used in information retrieval.

The first figure is the percentage of correct nearest neigh-
bors (NN), i.e. the number of cases in which the top ranked
database item, discarding the query itself, belongs to the
same class as the query. We also computed the first tier,
i.e. how many melodies of the query’s class are returned
within the first K − 1 matches, where K is the size of the
query class. A similar performance figure is the second
tier, i.e. how many melodies of the query’s class are re-
turned within the first 2(K − 1) matches. The laplacian

2 Equivalent with “tune family” and “Melodietyp”.

spectral method performs best with a NN score of 66%, a
1st tier score of 44% and a 2nd tier score of 63%.

Although these performance figures show in general
the efficacy of the method, there are some interesting cases
in particular we would like to point out here. In Figure 1
there is a special case of an “almost false” positive: for
query OGL19205 (belonging to “Heer Halewijn - 3rd ver-
sion”), the nearest neighbor is OGL19107, that belongs to
the group “Heer Halewijn - 4th version”. However, the
nearest neighbor is somehow related to the query; coin-
cidentally they share the same graph representation, as is
shown in Figure 3. This example shows how two melodies
can be identical from the interval connectivity point of
view but can also be perceptually quite different. This may
represent the main limitation of this method in perceptual
similarity tasks. The second example (Figure 2) shows the
nearest neighbors for the query song OGL19406. Both ex-
amples may suggest also that in the case of folksongs peo-
ple tend to remember more the interval connectivity than
the actual intervals of the melody.

Furthermore, we experimented with weighting the ed-
ges based on the interval they represent. For this purpose,
two different sets of weights were used: one reflecting the
difference in notes on the chromatic scale (ignoring differ-
ences in octaves) and one reflecting the harmonics of the
interval, giving larger weights to consonant intervals and
smaller weights to dissonant intervals. During this round
of experiments, these methods did not improve the results
obtained with normal laplacian spectra.

Using the same test corpus and performance measures
we compared our method to the optimal distance mea-
sure that was established by Müellensiefen and Frieler
[10]. These results are also presented in Table 1, under the
name Opti3. This distance measure is a weighted combi-
nation of three distance measures, each working on dif-
ferent feature sets. These measures are harmcore (using
harmonic correlation), rhythfuzz (using fuzzified rhythm
values) and ngrukkon (taking into account characteristic
motives). This combined distance measure was estab-
lished empirically out of 50 building blocks, by search-
ing for a weighted combination whose performance best
reflected the results of an extensive human listening ex-
periment. Consequently, this method has been fitted to
the data set at hand, explaining why the results are not op-
timal in our experiment. We also compared our method
to the Earth Mover’s Distance (EMD). This distance mea-
sure takes two weighted point sets as input, and measures
the minimum amount of work needed to transform one
into the other by moving weight. The EMD is used in
a number of different contexts; in the musical case, as
pointed out in [13], the (2 dimensional) weighted point
set is represented by the score itself, where the weight as-
signed to each note is its duration. However, since our
method only takes into account the global melodic struc-
ture, we projected the weighted points on the pitch axis
prior to computing the transportation distances. The “Pro-
portional Transportation Distance” (PTD) is a modifica-
tion of the EMD in order to get a similarity measure based



on weight transportation such that the surplus of weight
between two point sets is taken into account.

Figure 1. Example of false positive for the query song
“Heer Halewijn” (3rd version) OGL19205 with its NN,
OGL19107, instance of “Heer Halewijn” (4th version).

Figure 2. Example of true positive for the query song
“In Frankrijk buiten de poorten” (2nd version) OGL19406
with its NN, OGL41709.

Figure 3. Graph representation of the folk songs
OGL19205 and OGL19107 (see Figure 1). The two let-
ters in each circle represent the pitch classes respectively
in the first and in the second song.

6 CONCLUDING REMARKS

We presented a graph spectral approach that is new to mu-
sic retrieval. Our method is focussed on the intervallic
structure of the melody. This structure is encoded in a
graph whose vertices correspond to the 12 pitch classes
and whose edges reflect the interval sequence of the melody;
an edge is added to the graph if the pitch classes of the cor-
responding vertices appear consecutively in the melody.
The graphs are indexed into a database using their lapla-
cian spectra, a feature vector that reflects the original topol-
ogy and graph structure to a large extent.

We evaluated our approach using a subset of a large
collection of Dutch folk songs. On this test corpus, our
method clearly outperforms existing methods. It is our in-
tention to investigate this method further, for instance by
weighting the edges with the duration of the target note
and to extend the test corpus. Furthermore we feel that the
results can improve by incorporating more detailed musi-
cal features.
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