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ABSTRACT

Hierarchical taxonomies of classes arise in the analysis

of many types of musical information, including genre,

as a means of organizing overlapping categories at vary-

ing levels of generality. However, incorporating hierarchi-

cal structure into conventional machine learning systems

presents a challenge: the use of independent binary classi-

fiers for each class in the hierarchy can produce hierarchi-

cally inconsistent predictions. That is, an example may be

assigned to a class, and not assigned to the parent of that

class. This paper applies a Bayesian framework to com-

bine, or aggregate, a hierarchy of multiple binary classi-

fiers in a principled manner, and consequently improves

performance over the hierarchy as a whole. Furthermore,

such an approach allows for an arbitrarily complex hier-

archy, and does not suffer from classes that are too broad

or too refined. Experiments on the MIREX 2005 symbolic

genre classification dataset show that our Bayesian Aggre-

gation algorithm provides significant improvement over

independent classifiers, and demonstrates superior perfor-

mance compared to previous work. Our method also im-

proves similarity search by ranking songs by similarity of

hierarchical predictions to those of a query song.

1 INTRODUCTION

Many musical concepts are inherently hierarchical. Some

notion of hierarchy is implicitly or explicitly at play in

concepts such as genre and mood (which have overlapping

coarse and fine categories), instrument timbre (which is

grouped by instrument families), and meter. When hierar-

chy has been accommodated in automatic classification of

these concepts, it has generally been in quite simple ways

(such as the top-down approach of [9]) or in ways that are

acutely tailored to the learning task and/or classification

method at hand (e.g. [8, 14]).

We have developed a technique called Bayesian Ag-

gregation, which uses the output predictions of arbitrary

independent classifiers (such as k-nearest neighbor, sup-

port vector machines, etc.) which we refer to as the base

classifiers, and aggregates them in such a way as to take

advantage of the hierarchical nature of the predictions to

improve classification accuracy.

We demonstrate performance of this method on genre
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classification, a popular classification task in music infor-

mation retrieval. Genre is a culturally relevant and practi-

cally useful concept, and genre classification systems have

the potential to be quite useful in organizing and allowing

efficient access to music databases as shown by McKay

in [12]. Further, the same work argued that multiple class

assignments and user-specified ontological structure are

beneficial in principle; both of these are inherently sup-

ported by Bayesian Aggregation.

We describe the genre dataset and features used in Sec-

tion 2.1, and provide background on classification algo-

rithms in Section 2.2. We describe our algorithm in Sec-

tion 3, and demonstrate in Section 4 that the use of Bayes-

ian Aggregation allows for a significant improvement in

genre classification accuracy when compared either to ex-

isting methods, or to the predictions of independent clas-

sifiers without aggregation. Further, it does so in a way

that guarantees that the predictions will be consistent with

the constraints of the hierarchy; that is, once an instance

is assigned to a leaf class, it will also be assigned to the

leaf’s parent classes. We also demonstrate that the outputs

of such a classification system may offer improvements to

similarity search systems built on genre classifiers.

2 BACKGROUND

2.1 Genre classification

Genre classification has been a popular task in music in-

formation retrieval since originally posed by Tzanetakis

[15]. In 2005, the MIREX contest featured both audio

and symbolic musical genre classification tasks [11]. The

winning participants of the symbolic genre classification

task employed the Bodhidharma MIDI classification sys-

tem (presented in [10] and expanded in [9]) that extracts

111 high-level features related to instrumentation, rhythm,

dynamics, and chords. Bodhidharma also considers hi-

erarchical relationships via a top-down classification ap-

proach, wherein classifier outputs at each branch of a hi-

erarchy determine which child classifiers will be used to

further refine the classification. In our evaluation, we used

the Bodhidharma features from the MIREX 2005 38-leaf

class hierarchy and 950-item symbolic genre dataset.

2.2 Classification

Classification is a well-studied problem in the machine

learning literature. One popular choice of classifier is the



support vector machine (SVM), for which an accessible

overview is given in [4]. Given a labeled training set,

which includes both positive (members of the genre) and

negative example vectors, the SVM finds the maximally-

separating hyperplane in a kernel-transformed vector space

between the two subsets. To classify a novel, unlabeled

example, we can compute its distance to the maximally-

separating hyperplane. SVMs have been used extensively,

and there exists significant theoretical and empirical evi-

dence of their classification efficacy.

In this work we exclusively use support vector ma-

chines as a base classifier, due to its ability to support

wide ranges of data without assumptions on the distribu-

tion of values (kNN classifiers, by contrast, expect that the

Euclidean L2 norm is meaningfully defined over the fea-

ture vector space, which is not the case for these features).

However, our method can be used to improve the results

of any type of classifier; we have shown its utility with

kNN classifiers in a previous work [1].

3 ALGORITHM DESCRIPTION

As mentioned, we perform hierarchical classification of

music examples by aggregating the results of multiple in-

dependent classifiers according to a Bayesian framework,

to perform collaborative error correction over their possibly-

inconsistent predictions. We build the framework in a

training phase using labeled example data, and subsequently

use the pre-computed framework to assign labels to novel

data in a classification phase. The reader is referred to [3]

for details and analyses beyond those presented here.

3.1 Training Phase

The first step to our algorithm is to train a set of individ-

ual base classifiers to predict memberships for each class

in the hierarchy. We call this initial set of predictions the

base classification. We use base classifications from the

training set in order to generate a Bayesian network that

describes the hierarchy. A Bayesian network involves a

number of random variables, some of which are observed

directly, while others are hidden [6]. Of these variables,

some are assumed to be conditionally dependent on oth-

ers. We can visually represent this as a graph, as in Fig-

ure 1. Nodes represent variables, and edges represent con-

ditional dependence. Given values for observed nodes,

Bayesian inference algorithms use this network to calcu-

late probabilities for hidden node values, or find the most

probable configuration of hidden node value assignments

consistent with the observations.

For a given example, let yi denote the actual binary

membership to class i, ŷi denote the base classifier predic-

tion for that class, and ~yparents(i) denote the actual mem-

bership to superclasses of i. For example, yi might rep-

resent membership in the Smooth Jazz genre, with ŷi the

prediction of the base classifier trained to recognize that

genre, and ~yparents would then represent membership in

the Modern Pop and Fusion genres.

After obtaining a set of (possibly inconsistent) ŷ pre-

dictions from all base classifiers, we wish to find the most
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y1 ŷ1
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y4 ŷ4

(a) Hierarchy of classes (b) Bayesian network

Figure 1. The class hierarchy (a) is transformed into a Bayesian net-

work (b). The y nodes are the binary-valued hidden nodes representing

actual membership to the class, and the corresponding ŷ nodes are the

observed classifier outputs.

probable set of consistent y labels that may be underly-

ing them. Therefore, for N nodes we need to find the

labels y1 . . . yN that maximize the conditional probability

P (y1 . . . yN |ŷ1 . . . ŷN ), which by Bayes rule equals

P (ŷ1 . . . ŷN |y1 . . . yN )P (y1 . . . yN )

Z
, (1)

where Z is a constant normalization factor. We propose a

Bayesian network structure for this problem, as illustrated

by Figure 1. The class hierarchy shown at left is trans-

formed into a Bayesian network by adding extra nodes

that correspond to the observed classifier outputs. The y-

nodes are probabilistically dependent on their parent classes,

and the ŷ-nodes are probabilistically dependent on their

corresponding labels y.

We enforce hierarchical consistency of labels using the

edges among the y-nodes. The edges encode the condi-

tional dependencies P (yi|~yparents(i)), where ~yparents(i)

is used to denote all parent y-nodes of node yi, which we

set to ensure that a label must be 0 if any of its parents is 0.

The remaining entries P (yi|~yparents(i) = 1) are inferred

from the training set. We condition each y-node only on

its parents, thereby limiting the complexity of the Bayes

net to one that is both tractable to infer and constrained to

avoid overfitting, producing the following simplification:

P (y1 . . . yN ) =

N∏

i=1

P (yi|~yparents(i)). (2)

The edges from y to ŷ reflect an important observation:

for a given example, a classifier prediction ŷi is condi-

tionally independent of all other classifiers’ predictions ŷj

and labels yj (i 6= j) given its true label yi. This simplifies

Equation 1, since we can write

P (ŷ1 . . . ŷN |y1 . . . yN ) =

N∏

i=1

P (ŷi|yi). (3)

P (ŷi|yi) consists of P (ŷi|yi = 1) and P (ŷi|yi = 0),
which are the distributions for the base classifier predic-

tions, and can be estimated during training by validation.

We obtain a sampling of the distributions P (ŷi|yi = 1)
and P (ŷi|yi = 0), using cross validation on the training

data. We use the continuous SVM outputs, without thresh-

olding at zero, as the observed ŷi values, and model these

two distributions as Gaussians, computing their means and

variances for each class over the SVM outputs for positive

and negative examples, respectively.



3.2 Classification Phase

The first step to assigning a genre to a novel example

is to compute a base classification using the trained per-

class SVMs. In our Bayesian network, this corresponds

to observing values for the ŷi nodes. A Bayesian infer-

ence algorithm will then find the most likely configura-

tion of (consistent) hidden y labels for the given ŷ pre-

dictions, or the marginal distribution P (yi|ŷ1 . . . ŷN ) for

each class separately. We use the marginal probabilities

P (yi = 1|ŷ1 . . . ŷN ) in our results so that we retain real-

valued membership probabilities and can threshold them

at different levels as desired. Among the many Bayesian

inference algorithms available, in our experiments we used

the junction tree algorithm for exact inference, although

approximate inference with Monte Carlo methods such as

Gibbs sampling may be more practical for more complex

hierarchies. Descriptions and detailed references for these

and other inference algorithms are available in [13].

4 EXPERIMENTAL RESULTS

4.1 Genre Classification

For class hierarchies in general, and in particular for the

the MIREX 2005 dataset, each training example belongs

to very few nodes, in comparison to all the other nodes for

which it counts as a negative example. In consequence,

for each node the number of negative examples is dispro-

portionately larger than the number of positives, a charac-

teristic known as skew. Since machine learning algorithms

favor simpler models, when possible, to avoid overfitting

the training data, failing to take skew into account can

produce classifiers that unconditionally predict negative,

as this is an ultimately simple model with seemingly very

high accuracy. Instead, a skew-insensitive performance

measure is necessary, both for optimizing during training

and for analyzing results, which will penalize errors on the

few positive examples proportionally higher than errors on

the ample negatives. The standard skew-insensitive accu-

racy is the average of sensitivity (accuracy on positive ex-

amples) and specificity (accuracy on negative examples)

0.5
true positives

true pos. + false neg.
+ 0.5

true negatives

true neg. + false pos.
. (4)

On the MIREX 2005 symbolic genre classification data-

set, we trained linear SVMs using the SVMlight software

[7] with the appropriate cost factors to compensate for

class skew. We used 3-fold cross-validation, obtaining

three SVMs for each class. Each example is used as train-

ing for two, and a class prediction is given for that ex-

ample by the third. The Bayesian network was then con-

structed using these distributions as previously described,

and marginal probabilities were computed for the consis-

tent hidden labels using Bayesian inference.

Average skew-insensitive accuracy over all 55 classes

was 76.8% for independent SVMs, and 85.1% after Bayes-

ian Aggregation thresholded at p > 0.5. Figure 2 shows a

scatterplot of each class before and after aggregation.

0.5 0.6 0.7 0.8 0.9 1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Independent SVM Accuracies

A
c
c
u
ra

c
ie

s
 a

ft
e
r 

B
a
y
e
s
ia

n
 A

g
g
re

g
a
ti
o
n

Figure 2. Scatterplot of skew-insensitive accuracies for each class

before vs. after Bayesian Aggregation.

To provide a fair comparison of our results directly

against previous work using this dataset, we also com-

puted the “raw accuracy” statistic reported in the MIREX

2005 contest results, which relies on the one-leaf-only na-

ture of song labels in this dataset and picks as the genre

prediction the leaf node with the highest output. Under

this multi-class single-label criterion, 56.0% of all exam-

ples were labeled correctly by independent SVMs, and

60.1% after Bayesian Aggregation, compared to the MIREX

2005 contest entries in Table 1. Considering that this re-

quires the choice of one correct class out of 38, where a

random guess would have less than 3% accuracy, both the

improvement over previous results and the improvement

of Bayesian Aggregation over independent SVMs are sig-

nificant.

Algorithm Raw Accuracy

Bayesian Aggregation 60.1%

Independent SVMs 56.0%

Bodhidharma 46.1%

Basili et al. (NB) 45.0%

Basili et al. (J48) 41.0%

Li 39.8%

Ponce de Leon & Inesta 15.3%

Table 1. Independent SVMs and Bayesian Aggregation compared

to MIREX 2005 symbolic genre classification contest entries by single-

label multi-class “raw accuracy.”

4.2 Similarity Search

A related application is to search for songs “similar” to

a query song by genre, or equivalently, rank all songs in

a database by genre similarity to the given song. Again

it is assumed that only a small part of the available data

is manually labeled, so the query song as well as the re-

trieved songs might have no certain genre label. While

one could first classify each song as above into a discrete

genre and then retrieve the other songs in that genre as the

most similar, the hierarchy provides a means of defining

inter-class similarity as well.



For our experiments, we defined similarity of two songs

as the number of their equal binary labels in the hierarchy,

which decreases as the path distance of their classes in the

hierarchy increases. We computed the “true similarity” of

every pair of songs using the actual labels, and the pre-

dicted similarities from independent SVMs outputs and

then for the Bayes-aggregated predictions. To avoid se-

lecting an arbitrary threshold, the classes along the branch

of the maximum-confidence leaf were selected as the posi-

tive labels for each example. Using each song as the query,

all other songs were sorted by similarity, and the top pre-

dicted results were compared to the top results as given

by true similarity. Across all examples, of the 100 most-

similar songs an average of 52% were retrieved by inde-

pendent SVMs, while the aggregated predictions retrieved

62%. Similarly, of the top 50, SVMs retrieved 46%, com-

pared to 52% after Bayesian Aggregation.

West and Lamere have used Euclidean distance between

genre classifier soft outputs to perform similarity compu-

tation for playlist generation and collection visualization,

but without regard to hierarchical class organization [16].

Our results suggest that applying Bayesian Aggregation to

such a system could improve on their approach.

5 CONCLUSIONS AND FUTURE WORK

Bayesian Aggregation offers an elegant and generalizable

means of taking hierarchy into account in performing a

classification task, and thus offers several benefits to mu-

sic information retrieval researchers. Our experiments de-

monstrate that Bayesian Aggregation is able to signifi-

cantly improve genre classification accuracy, both com-

pared to the base classifiers used alone, as well as to pre-

vious work. This is done at the minor cost of training and

evaluation of parent-node classifiers in addition to leaf-

node classifiers; the time required for additional evalua-

tions is on the order of milliseconds. By allowing for a

soft assignment to related classes, our algorithm is able to

effectively expand the training set for each class, which

is particularly important for datasets such as this with a

limited number of examples.

This has the important consequence that our method

enables arbitrarily refined or broad taxonomies; it remains

robust even when considering classes for which the indi-

vidual classifiers may be inaccurate, thereby decoupling

taxonomy design from concerns of system performance.

The algorithm does this by discovering inaccuracies dur-

ing the training phase and implicitly discounts such classi-

fiers’ predictions on new data. Furthermore, this approach

is superior to heuristic top-down or bottom-up approaches

that place excessive responsibility on the root or leaf clas-

sifiers, respectively, without providing any means to cor-

rect bad predictions at those levels. Most importantly,

Bayesian Aggregation is able to improve accuracy for any

type of base classifier, as suited to the task. Although we

used SVMs for this application, the system is independent

of this choice, and one can use any other classification al-

gorithm as applicable, such as neural networks or kNN.

Given these characteristics of our algorithm, there exist

many avenues of future work, which we intend to explore.

Our algorithm is currently capable of handling multi-label

classification problems, such as genre or mood, where a

song can be labeled to multiple classes at various lev-

els. We therefore intend to empirically demonstrate its

efficacy on such tasks. Additionally, our algorithm can

be specialized to make single-leaf predictions, potentially

further improving performance. We are excited about the

potentials that hierarchy-aware methods present, and have

presented this work as a significant first step.

6 ACKNOWLEDGMENTS

We would like to thank Cory McKay for sharing the Bod-

hidharma MIDI dataset used for evaluation of this work,

and for his helpful advice and opinions. This work was

partially supported by an ATI/AMD Technologies Fellow-

ship and NSF grant IIS-0513552.

7 REFERENCES

[1] Barutcuoglu, Z. and C. DeCoro. “Hierarchical Shape Classification

Using Bayesian Aggregation,” Proc. Shape Modeling International,

2006.

[2] Barutcuoglu, Z., R.E. Schapire and O.G. Troyanskaya. “Hierarchi-

cal Multi-label Prediction of Gene Function,” Bioinformatics, Jan-

uary 2006.

[3] Barutcuoglu, Z., C. DeCoro, R.E. Schapire and O.G. Troyanskaya.

“Bayesian Aggregation for Hierarchical Classification,” Technical

Report TR-785-07, Princeton University, Department of Computer

Science, 2007

[4] Burges, C.J.C. “A Tutorial on Support Vector Machines for Pattern

Recognition,” Data Mining and Knowledge Discovery, 1998.

[5] Flach, P.A. “The geometry of ROC space: understanding machine

learning metrics through ROC isometrics,” Proc. 20th International

Conference on Machine Learning, 2003.

[6] Heckerman, D. “A Tutorial on Learning with Bayesian Networks,”

Learning in Graphical Models, MIT Press, Cambridge, MA, 1999.

[7] Joachims, T. “Making large-Scale SVM Learning Practical,” Ad-

vances in Kernel Methods - Support Vector Learning, MIT-Press,

Cambridge, MA, 1999.

[8] Klapuri, A., A. Eronen and J. Astola. “Analysis of the meter of

acoustic musical signals,” IEEE Trans. Speech and Audio Process-

ing 14(1), 2006.

[9] McKay, C. “Automatic Genre Classification of MIDI Recordings,”

M.A. Thesis, McGill University, Canada, 2004.

[10] McKay, C. and I. Fujinaga. “Automatic Genre Classification Using

Large High-Level Musical Feature Sets,” Proc. ISMIR, 2004.

[11] McKay, C. and I. Fujinaga. “The Bodhidharma system and the re-

sults of the MIREX 2005 symbolic genre classification contest,”

Proc. ISMIR, 2005.

[12] McKay, C. and I. Fujinaga. “Musical genre classification: Is it worth

pursuing and how can it be improved?” Proc. ISMIR, 2006.

[13] Murphy, K. “The Bayes Net Toolbox for MATLAB,” Computing

Science and Statistics, 2001.

[14] Rauber, A., E. Pampalk and D. Merkl. “Using pyscho-acoustic mod-

els and self-organizing maps to create a hierarchical structuring of

music by sound similarity,” Proc. ISMIR, 2002

[15] Tzanetakis, G., G. Essl and P. Cook. “Automatic musical genre clas-

sification of audio signals,” Proc. ISMIR, 2001.

[16] West, K. and P. Lamere. “A Model-Based Approach to Construct-

ing Music Similarity Functions,” EURASIP Journal on Advances in

Signal Processing, 2007.


