
IMPROVING GENRE CLASSIFICATION BY COMBINATION OF AUDIO
AND SYMBOLIC DESCRIPTORS USING A TRANSCRIPTION SYSTEM

Thomas Lidy, Andreas Rauber
Vienna University of Technology, Austria

Department of Software Technology
and Interactive Systems

Antonio Pertusa, José Manuel Iñesta
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ABSTRACT

Recent research in music genre classification hints at a
glass ceiling being reached using timbral audio features.
To overcome this, the combination of multiple different
feature sets bearing diverse characteristics is needed. We
propose a new approach to extend the scope of the fea-
tures: We transcribe audio data into a symbolic form using
a transcription system, extract symbolic descriptors from
that representation and combine them with audio features.
With this method, we are able to surpass the glass ceil-
ing and to further improve music genre classification, as
shown in the experiments through three reference music
databases and comparison to previously published perfor-
mance results.

1 INTRODUCTION

Audio genre classification is an important task for retrieval
and organization of music databases. Traditionally the re-
search domain of genre classification is divided into the
audio and symbolic music analysis and retrieval domains.
The goal of this work is to combine approaches from both
directions that have proved their reliability in their respec-
tive domains. To assign a genre to a song, audio classifiers
use features extracted from digital audio signals, and sym-
bolic classifiers use features extracted from scores. These
features are complementary; a score can provide very
valuable information, but audio features (e.g., the timbral
information) are also very important for genre classifica-
tion.

To extract symbolic descriptors from an audio signal
it is necessary to first employ a transcription system in
order to detect the notes stored in the signal. Transcrip-
tion systems have been investigated previously but a well-
performing solution for polyphonic music and a multitude
of genres has not yet been found. Though these systems
might not be in a final state for solving the transcription
problem, our hypothesis is that they are able to augment
the performance of an audio genre classifier. In this work,
a new transcription system is used to get a symbolic rep-
resentation from an audio signal.
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Figure 1. General framework of the system

The overall scheme of our proposed genre classifica-
tion system is shown in Figure 1. It processes an audio file
in two ways to predict its genre. While in the first branch,
the audio feature extraction methods described in Section
3.1 are applied directly to the audio signal data, there is
an intermediate step in the second branch. A polyphonic
transcription system, described in Section 3.2.1, converts
the audio information into a form of symbolic notation.
Then, the symbolic feature extractor (c.f. Section 3.2.2) is
applied on the resulting representation, providing a set of
symbolic descriptors as output. The audio and symbolic
features extracted from the music serve as combined in-
put to a classifier (c.f. Section 3.3). Section 4 provides a
detailed evaluation of the approach and Section 5 draws
conclusions and outlines future work.

2 RELATED WORK

Aucouturier and Pachet report about a glass ceiling be-
ing reached using timbre features for music classifica-
tion [1]. In our work on combining feature sets from
both the audio and the symbolic MIR domains we aim
at breaking through this glass ceiling and bringing fur-
ther improvements to music genre classification. To our
knowledge there are is previous work combining audio
and symbolic approaches for music classification. McKay
et al. suggested this possibility in 2004 [12], but they also
pointed out that the transcription techniques were not re-
liable enough to extract high-level features from them.

However, there are many related works on audio genre
classification. Li and Tzanetakis [9] did experiments on
various combinations of FFT, MFCC, Beat and Pitch fea-
tures using Support Vector Machines (SVM, MPSVM)
and Linear Discriminant Analysis (LDA). Mandel and
Ellis [11] compared MFCC-based features extracted at



the song-level with extraction at the artist-level, investi-
gated different distance measures for classification, and
compared results from SVM and k-NN, where SVM per-
formed better in all results. Pampalk et al. [14] combined
different feature sets based on Fluctuation Patterns and
MFCC-based Spectral Similarity in a set of experiments.
One of the four databases used overlaps with one of the
three we use. Bergstra et al. [2] described the approach
they used in the MIREX 2005 evaluation. They employed
a combination of 6 different feature sets and applied Ad-
aBoost for ensemble classification.

About symbolic genre classification, there are previous
studies like [12] that extract features from scores, using a
learning scheme to classify genres, reporting good results.
The symbolic features used in our study are based on those
described in [16], which were used for symbolic music
classification. One of the main components of our work is
a polyphonic transcription system. This it is not a solved
task and a very active topic in MIR research; some of the
main previous approaches were reviewed in [7].

This study is related to [10], as our goal is to improve
previous music genre classification results by extension of
the feature space through the novel approach of including
features extracted from symbolic transcription.

3 SYSTEM DESCRIPTION

3.1 Audio Feature Extraction

3.1.1 Rhythm Patterns

The feature extraction process for a Rhythm Pattern [17,
10] is composed of two stages. First, the specific loudness
sensation on 24 critical frequency bands is computed, by
using a Short Time FFT, grouping the resulting frequency
bands to the Bark scale, applying spreading functions to
account for masking effects and successive transforma-
tion into the Decibel, Phon and Sone scales. This results
in a psycho-acoustically modified Sonogram representa-
tion that reflects human loudness sensation. In the second
step, a discrete Fourier transform is applied to this Sono-
gram, resulting in a (time-invariant) spectrum of loudness
amplitude modulation per modulation frequency for each
individual critical band. After additional weighting and
smoothing steps, a Rhythm Pattern exhibits magnitude of
modulation for 60 modulation frequencies (between 0.17
and 10 Hz) on 24 bands, and has thus 1440 dimensions.

3.1.2 Rhythm Histograms

A Rhythm Histogram (RH) aggregates the modulation
amplitude values of the individual critical bands computed
in a Rhythm Pattern and is thus a lower-dimensional de-
scriptor for general rhythmic characteristics in a piece of
audio [10]. A modulation amplitude spectrum for criti-
cal bands according to the Bark scale is calculated, as for
Rhythm Patterns. Subsequently, the magnitudes of each
modulation frequency bin of all critical bands are summed

up to a histogram, exhibiting the magnitude of modulation
for 60 modulation frequencies between 0.17 and 10 Hz.

3.1.3 Statistical Spectrum Descriptors

In the first part of the algorithm for computation of a Sta-
tistical Spectrum Descriptor (SSD) the specific loudness
sensation is computed on 24 Bark-scale bands, equally as
for a Rhythm Pattern. Subsequently, the mean, median,
variance, skewness, kurtosis, min- and max-value are cal-
culated for each individual critical band. These features
computed for the 24 bands constitute a Statistical Spec-
trum Descriptor. SSDs are able to capture additional tim-
bral information compared to Rhythm Patterns, yet at a
much lower dimension of the feature space (168 dim.), as
shown in the evaluation in [10].

3.1.4 Onset Features

An onset detection algorithm described in [15] has been
used to complement audio features. The onset detector
analyzes each audio frame labeling it as an onset frame or
as a not-onset frame. As a result of the onset detection,
5 onset interval features have been extracted: minimum,
maximum, mean, median and standard deviation of the
distance in frames between two consecutive onsets. The
relative number of onsets are also obtained, dividing the
number of onset frames by the total number of frames of
a song. As this onset detector is based on energy varia-
tions, the strength of the onset, which corresponds with
the value of the onset detection function o(t), can pro-
vide information about the timbre; usually, an o(t) value
is high when the attack is shorter or more percussive (e.g.,
a piano), and low values are usually produced by softer
attacks (e.g., a violin). The minimum, maximum, mean,
median and standard deviation of the o(t) values of the
detected onsets were also added to the onset feature set,
which finally consists of 11 features.

3.2 Symbolic Feature Extraction

3.2.1 Transcription System

To complement the audio features with symbolic features
we developed a new polyphonic transcription system to
extract the notes. This system converts the audio signal
into a MIDI file that will later be analyzed to extract the
symbolic descriptors. It does not consider rhythm, only
pitches and note durations are extracted. Therefore, the
transcription system converts a mono audio file sampled
at 22 kHz into a sequence of notes. First, performs a Short
Time Fourier Transform (STFT) using a Hanning window
with 2048 samples and 50% overlap. With these parame-
ters, the temporal resolution is 46 ms. Zero padding has
been used, multiplying the original size of the window
by 8 and adding zeroes to complete it before the STFT
is computed. This technique does not increase resolution,
but the estimated amplitudes and frequencies of the new
spectral bins are usually more accurate than applying in-
terpolation.



Then, the onset detection stage described in [15] is per-
formed, classifying each time frame ti as onset or not-
onset. The system searches for notes between two con-
secutive onsets, analyzing only one frame between two
onsets to detect each chord. To minimize the note attack
problems in fundamental frequency (f0) estimation, the
frame chosen to detect the active notes is to + 1, being
to the frame where an onset was detected. Therefore, the
spectral peak amplitudes 46 ms after an onset provide the
information to detect the actual chord.

For each frame, we use a peak detection and estimation
technique proposed by Rodet called Sinusoidal Likeness
Measure (SLM) [19]. This technique can be used to ex-
tract spectral peaks corresponding to sinusoidal partials,
and this way residual components can be removed. SLM
needs two parameters: the bandwith W , that has been set
as W = 50 Hz and a threshold µ = 0.1. If the SLM value
vΩ < µ, the peak will be removed. After this process, an
array of sinusoidal peaks for each chord is obtained.

Given these spectral peaks, we have to estimate the
pitches of the notes. First, the f0 candidates are chosen
depending on their amplitudes and their frequencies. If
a spectral peak amplitude is lower than a given threshold
(experimentally, 0.05 reported good results), the peak is
discarded as f0 candidate, because in most instruments
usually the first harmonic has a high amplitude. There are
two more restrictions for a peak to be a f0 candidate: only
f0 candidates within the range [50Hz-1200Hz] are consid-
ered, and the absolute difference in Hz between the candi-
date and the pitch of its closest note in the well-tempered
scale must be less than fd Hz. Experimentally, setting this
value to fd = 3 Hz yielded good results. This is a fixed
value independent of f0 because this way many high fre-
quency peaks that generate false positives are removed.

Once a subset of f0 candidates is obtained, a fixed
spectral pattern is applied to determine whether the can-
didate is a note or not. The spectral pattern used in this
work is a vector in which each position represents a har-
monic value relative to the f0 value. Therefore, the first
position of the vector represents f0 amplitude and will al-
ways be 1, the second position contains the relative am-
plitude of the second partial respect to the first, one and
so on. The spectral pattern sp used in this work contains
the amplitude values of the first 8 harmonics, and has been
set to sp = [1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01], which is
similar to the one proposed by Klapuri in [6]. As differ-
ent instruments have different spectra, this general pattern
is more adequate for some instruments, such as a piano,
and less realistic for others, like a violin. This pattern was
selected from many combinations tested.

An algorithm is applied over all the f0 candidates to
determine whether a candidate is a note or not. First, the
harmonics h that are a multiple of each f0 candidate are
searched. A harmonic h belonging to f0 is found when the
closest spectral peak to f0h is within the range [−fh, fh],
being fh:

fh = hf0

√
1 + β(h2 − 1) (1)

with β = 0.0004. There is a restriction for a candidate

to be a note; a minimum number of its harmonics must
be found. This number was empirically set to half of the
number of harmonics in the spectral pattern. If a candidate
is considered as a note, then the values of the harmonic
amplitudes in the spectral pattern (relative to the f0 ampli-
tude) are subtracted from the corresponding spectral peak
amplitudes. If the result of a peak subtraction is lower
than zero, then the peak is removed completely from the
spectral peaks. The loudness ln of a note is the sum of its
expected harmonic amplitudes.

After this stage, a vector of note candidates is obtained
at each time frame. Notes with a low absolute or relative
loudness are removed. Firstly, the notes with a loudness
ln < γ are eliminated. Experimentally, a value γ = 5
reported good results. Secondly, the maximum note loud-
ness Ln = max ln at the target frame is computed, and
the notes with ln < ηLn are also discarded. After exper-
iments, η = 0.1 was chosen. Finally, the frequency and
loudness of the notes are converted to MIDI notes.

3.2.2 Symbolic Features

A set of 37 symbolic descriptors was extracted from the
transcribed notes. This set is based on the features de-
scribed in [16], that yielded good results for monophonic
classical/jazz classification, and on the symbolic features
described in [18], used for melody track selection in MIDI
files. The number of notes, number of significant si-
lences, and the number of non-significant silences were
computed. Note pitches, durations, Inter Onset Intervals
(IOI) and non-diatonic notes were also analyzed, reporting
for each one their highest and lowest values, their average,
relative average, standard deviation, and normality. The
total number of IOI was also taken into account, as the
number of distinct pitch intervals, the count of the most
repeated pitch interval, and the sum of all note durations,
completing the symbolic feature set.

3.3 Classification

There are several alternatives of how to design a music
classification system. The option we chose is to concate-
nate different feature sets and provide the combined set to
a standard classifier that receives an extended set of fea-
ture attributes on which it bases its classification decision
(c.f. Figure 1). For our experiments we chose linear Sup-
port Vector Machines. We used the SMO implementation
of the Weka machine learning software [21] with pairwise
classification and the default Weka parameters (complex-
ity parameter C = 1.0). We investigated the performance
of the feature sets individually in advance and then de-
cided which feature sets to combine. In Section 4 we ex-
amine which feature sets achieve the best performance in
combination. Other possibilities include the use of classi-
fier ensembles, which is planned for future work.



4 EVALUATION

Our goal was to achieve improvements of music genre
classification by our novel approach of combining feature
sets from the symbolic and audio music information re-
trieval domains. In order to demonstrate the achievements
we made, we compare our results to the performance of
the audio features only, previously reported in [10], using
the same databases and the same evaluation method.

4.1 Data Sets

The three data sets that we used are well-known and avail-
able within the MIR community and are used also by
other researchers as reference music collections for exper-
iments. For an overview of the data see Table 1. One of
the data sets (‘GTZAN’) was compiled by George Tzane-
takis [20] and consists of 1000 audio pieces equally dis-
tributed over 10 popular music genres.

The other two music collections were distributed dur-
ing the ISMIR 2004 Audio Description Contest [3] and
are still available from the ISMIR 2004 web site. The
‘ISMIRrhythm’ data set was used in the ISMIR 2004
Rhythm classification contest. The collection consists of
698 excerpts of 8 genres from Latin American and ball-
room dance music. The ‘ISMIRgenre’ collection was
available for training and development in the ISMIR 2004
Genre Classification contest and contains 1458 songs
from Magna tune.com organized unequally into 6 genres.

4.2 Evaluation Method

For evaluation we adhere to the method we used in the
preceding study [10]. To compare the results with other
performance numbers reported in literature on the same
databases, we use (stratified) 10-fold cross validation. As
described in Section 3.3, we use Support Vector Machines
for classification. We report macro-averaged Precision
(PM ) and Recall (RM ), F1-Measure and Accuracy (A),
as defined in [10]. This way we are able to compare the
results of this study directly to the performance reported
in [10], and we can use the best results of the previous
study as a baseline for the current work.

4.3 Performance of Individual Feature Sets

In the first set of experiments, we performed an evalua-
tion of the ability of the individual feature sets described
in Section 3 to discriminate the genres of the data sets.
This gives an overview of the potential of each feature
set and its expected contribution to music genre classifi-
cation. The performance of three of the four audio feature
sets has been already evaluated in [10], but the experiment
has nevertheless been repeated, to (1) approve the results,
(2) show the baseline of the individual feature sets and (3)
provide a comparison of the individual performance of all
5 feature sets used in this work.

Table 2 shows Precision, Recall, F1-Measure and Ac-
curacy for the 5 feature sets, as well as their dimensional-

Table 1. Data sets used for evaluation
data set cl. files file duration total duration
GTZAN 10 1000 30 seconds 05:20
ISMIRrhythm 8 698 30 seconds 05:39
ISMIRgenre 6 1458 full songs 18:14

ity. The features extracted by the Onset detector seem to
perform rather poorly, but considering the low dimension-
ality of the set (compared to the others), the performance
is nonetheless respectable. In particular, if we consider a
“dumb classifier” attributing all pieces to the class with the
highest probability (i.e. the largest class), the lower base-
line would be 10 % Accuracy for the GTZAN data set,
15.9 % for the ISMIRrhythm data set and 43.9 % for the
ISMIRgenre data set. Hence, the Onset features exceed
this performance substantially, making them valuable de-
scriptors.

The most interesting set of descriptors are the symbolic
ones derived from the transcribed data as described in Sec-
tion 3.2. Their Accuracy surpassed that of the Rhythm
Histogram features, which are computed directly from au-
dio, on the ISMIRgenre data set and they also achieved
remarkable performance on both other data sets.

If we compare the results of the RH, SSD and RP fea-
tures to those reported in [10], we notice small deviations,
which are probably due to (1) minor (bug) corrections in
the code of the feature extractor and (2) changes made in
newer versions of the Weka classifier.

4.4 Feature Set Combinations

There are potentially many feature combination possibili-
ties. In our experiments we combined the Onset and Sym-
bolic features with the best-performing audio feature set
and combinations of the previous evaluation (see [10]).
The baseline is taken from the maximum values in each
column of Table 5 in [10].

Table 3 shows the results of our approach of combin-
ing both audio and symbolic features. Adding Symbolic
features to the SSD features improves the results by sev-
eral percent. Together with Onset features, the Accuracy
of SSD features on the ISMIRrhythm data set is increased
by 10 percentage points. On the ISMIRgenre data set this
feature combination achieves the best result, with 81.4 %
Accuracy. Together with RH features, Accuracy reaches
76.8 % on the GTZAN set. The combination of all 5
feature sets achieves a remarkable 90.4 % on the ISMIR-
rhythm collection. Compared to the baseline of 2005, im-
provements were made consistently for all performance
measures on all databases.

4.5 Comparison to other works

4.5.1 GTZAN data set

Li and Tzanetakis performed an extensive study on indi-
vidual results and combinations of 4 different feature sets
(FFT, MFCC, Beat and Pitch features) and three differ-
ent classifiers [9]. The best result (on 10-fold cross val-



Table 2. Evaluation of individual feature sets. Dimensionality of feature set, macro-averaged Precision (PM ), macro-
averaged Recall (RM ), F1-Measure and Accuracy (A) in %.

GTZAN ISMIRrhythm ISMIRgenre
Feature Set dim. P M RM F1 A P M RM F1 A P M RM F1 A

Onset 11 34.4 34.9 34.1 34.9 44.8 44.4 40.3 48.4 26.9 33.9 29.7 58.0
Symbolic 37 41.2 41.3 40.8 41.3 49.6 47.9 46.7 51.1 40.0 43.0 39.7 66.0
RH 60 43.5 44.0 42.8 44.0 84.7 81.9 82.8 82.7 47.5 40.8 39.3 64.4
SSD 168 72.6 72.6 72.5 72.6 58.0 57.6 57.6 59.6 75.7 68.7 71.4 78.6
RP 1440 64.2 64.4 64.1 64.4 87.1 86.1 86.5 86.5 67.0 65.7 66.2 75.9

Table 3. Evaluation of feature set combinations. Best results boldfaced.

GTZAN ISMIRrhythm ISMIRgenre
Feature Sets dim. P M RM F1 A P M RM F1 A P M RM F1 A

Onset+Symb. 48 50.4 50.5 50.2 50.5 60.1 59.9 59.7 61.6 40.7 44.6 41.7 68.0
SSD+Onset 179 74.6 74.5 74.4 74.5 65.9 65.1 65.3 67.6 76.8 70.8 73.2 79.6
SSD+Symb. 205 76.0 75.7 75.8 75.7 62.1 62.0 62.0 63.6 76.5 71.2 73.3 81.0
SSD+Onset+Symb. 216 76.4 76.1 76.2 76.1 67.8 67.6 67.6 69.5 77.9 72.2 74.5 81.4
RH+SSD+Onset+Symb. 276 76.9 76.8 76.8 76.8 87.3 86.8 86.9 87.1 76.8 71.6 73.7 80.5
RP+SSD+Onset+Symb. 1656 74.3 74.3 74.2 74.3 90.1 89.4 89.7 89.8 72.8 71.7 72.2 80.6
RP+RH+SSD+Onset+Symb. 1716 74.0 74.0 73.9 74.0 91.0 90.0 90.4 90.4 73.0 71.9 72.4 80.9
Best result 2005 [10] 74.8 74.9 74.8 74.9 85.0 83.4 84.2 84.2 76.9 72.0 73.3 80.3

idation) using pairwise SVM was 69.1 % Accuracy, us-
ing LDA 71.1 %. Li et al. [8] reported an Accuracy of
74.9 % in a 10-fold cross validation of DWCH features
on the GTZAN data set using SVMs with pairwise clas-
sification and 78.5 % using one-versus-the-rest. With our
current approach we achieved 76.8 % and surpassed the
performance on pairwise classification.

Bergstra et al. describe the approach they used in the
MIREX 2005 evaluation in [2]. They used a combination
of 6 different feature sets and applied AdaBoost for en-
semble classification. The authors mention 83 % achieved
“in trials” on the GTZAN database, but they do not report
about the experiment setup (e.g. number of folds).

4.5.2 ISMIRrhythm data set

In [5] Flexer et al. proposed a combination scheme based
on posterior classifier probabilities for different feature
sets. They demonstrated their approach by combining a
spectral similarity measure and a tempo feature in a k-
NN (k=10) 10-fold cross validation on the ISMIRrhythm
data set, achieving a major improvement over linear com-
bination of distance matrices. Their maximum reported
Accuracy value was 66.9 %.

We compared the approach in [10] to Dixon et al.
achieving 96 % Accuracy incorporating a-priori tempo in-
formation about the genres and 85.7 % without [4]. With
the current proposed approach we achieve 90.4 % without
using any external information.

4.5.3 ISMIRgenre data set

The authors of [14] performed experiments on combina-
tion of different feature sets and used a data set that corre-

sponds to the training set of the ISMIR 2004 genre contest
and thus to 50 % of our database. However, they used a
specific splitting of the data, involving an artist filter. Al-
though recommended by recent studies, we did not apply
an artist filter in our experiments, because we would not
be able to compare the results to previous studies. More-
over, their experiments were evaluated using a nearest-
neighbor classifier and leave-one-out cross validation, an-
other reason why they cannot be compared to ours. Nev-
ertheless, they achieved an improvement on genre classi-
fication by determining specific weights for the individual
feature sets, with a maximum Accuracy of 81 % without
using the artist filter. In [13] an extended set of experi-
ments with other features and similarity measures is re-
ported on an equal database and test setup, however, no
higher results are reported than the previous one.

5 CONCLUSIONS AND FUTURE WORK

With our approach of combining audio with symbolic fea-
tures derived through the use of a transcription system
we achieved improvements on three reference benchmark
data sets, consistently for all four performance measures
reported. Although improvements on classification are not
of substantial magnitude, it seems that the “glass ceiling”
described in [1] can be surpassed by combining features
that describe diverse characteristics of music.

Future work includes investigation of the feature space,
especially of the high-dimensional Rhythm Patterns fea-
ture set. First approaches to reduce the dimensional-
ity have been undertaken by using Principal Component
Analysis, but a more sophisticated approach of feature se-
lection will be investigated.



There is still room for improvement of the onset detec-
tor (e.g. including tempo information) and the transcrip-
tion system, and with improvements, the performance of
the symbolic descriptors is expected to increase as well.
Additional symbolic features can be included in future.

We also plan to test different classifiers and to employ
classifier ensembles. Alternative approaches can be envis-
aged, such as the individual classification of the audio and
symbolic feature sets combining the decision of both bran-
ches using a classifier ensemble (e.g. decision by majority
vote), or the usage of different classifiers which receive
the same input, either individual or combined feature sets.

In conclusion, many improvements can be still done
to increase the performance of this combined audio music
classification approach that has yielded remarkable results
in these first experiments.

6 ACKNOWLEDGMENTS

This work is supported by the Spanish PROSEMUS
project with code TIN2006-14932-C02 and the EU FP6
NoE MUSCLE, contract 507752.

7 REFERENCES

[1] J.-J. Aucouturier and F. Pachet. Improving timbre sim-
ilarity: How high is the sky? Journal of Negative Re-
sults in Speech and Audio Sciences, 1(1), 2004.

[2] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and
B. Kegl. Aggregate features and AdaBoost for music
classification. Machine Learning, 65(2-3):473–484,
2006.
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