Towards Query by Singing / Humming on Audio Databases

- **Preprocessing**
 - **Karaoke Filter**: removes center pan (information contained in both channels) by inverting one channel and mixing it together with the other into a mono signal:

 \[\text{output} = L - R \]

 - **Requirements**:
 - stereo input signal
 - lead voice (and possibly solo instruments) centered in the stereo mix
 - instruments and backing vocals arranged out of center

- **Local Noise Filter**: derives a local (i.e. continuously updated) power spectrum of frequencies from a noise signal \(N \) which can then be removed from the signal \(S \) (based on versions 1.34, Sep 23, 2006 and 1.39, Jul 27, 2007 of the NoiseRemoval effect by Dominic Mazzoni as part of Audacity)

- **Bandpass Filter (300-1000Hz)**: keeps only frequency range of the input signal \(S \) that is relevant for human voice (lower bound is higher to filter out the bass guitar that might be in the center as well)

Modified SAX Approach
- **Piecewise Aggregate Approximation (PAA)**:
 A feature time series \(C=(c_1,...,c_n) \) is aggregated by factor \(n/w \) to \(C=(\tau_1,...,\tau_m) \)

 \[\tau_i = \frac{w}{n} \sum_{j=1}^{i} c_j, \quad 0 < i \leq n \]

- **Estimation of \(N \) quantiles** of the distribution of the PAA values
- **Discretization** of the values within a quantile to a unique symbol (lookup-table) guarantees an equally distributed alphabet.

- **Symbols are defined to be equidistant**, depending only on the distance in the ordered alphabet:

 \[d(s_i, s_j) = \frac{2i - j}{N - 1} \]

 (where \(i,j \) are symbol indices and \(N \) is the alphabet size)

- **Extraction of low level audio features (using JAudio)**

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio Power</td>
<td>0.6207</td>
</tr>
<tr>
<td>Chroma</td>
<td>0.5960</td>
</tr>
<tr>
<td>1st Formant (FF1)</td>
<td>0.5696</td>
</tr>
<tr>
<td>1st derivatives (d\text{FF1})</td>
<td>0.5490</td>
</tr>
</tbody>
</table>

- **High Level Patterns**

 - **Manual definition of generic shapes** in the time series of a feature (Audio Power):
 - **Flat patterns** - sections of silence or quiet background with low mean and low variance, or located between elevations
 - **Smooth elevations** - mean above a certain threshold, only one peak, probably describing single syllables
 - **Toothy structures** - elevations with mean above a certain threshold and more than one peak
 - **Undefined or noisy regions** - may result from quiet singing or filtered out instruments

 - **Manual definition of symbol distances**:
 - **round**
 - **toothy**
 - **noise**

 - **Song (“Why” performed by Annie Lennox)**

Test database: 200 songs from Rock/Pop/Soul

<table>
<thead>
<tr>
<th>Evaluation Measures:</th>
<th>ground truth</th>
<th>humanized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of Accuracy: (\text{MoA} = \frac{1}{n} \sum_{i=1}^{n} \frac{n - \text{rank}(t_i)}{n})</td>
<td>0.5965</td>
<td>0.5796</td>
</tr>
<tr>
<td>Mean Reciprocal Rank: (\text{MRR} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{\text{rank}(t_i)})</td>
<td>0.6262</td>
<td>0.6328</td>
</tr>
</tbody>
</table>

Best performance:
- aggregation factor = 4
- alphabet size = 12 (except 3 per bin for chroma)

Improvement by Boosting (beginning/chorus):
- \(\text{MoA} = 0.79 \), \(\text{MRR} = 0.3 \)
- top: 23.3%
- top-3: 30%
- top-10: 41.1%

Features:
- simple features
- 1st MFCC (MFCC1)
- 2nd MFCC (MFCC2)
- Fundamental Freq.
- 1st Formant (FF1)
- Chroma
- high-level patterns
- HLP/AF
- high-level patterns
- HLP/AF

Human Queries

<table>
<thead>
<tr>
<th>Feature combinations</th>
<th>humanized</th>
<th>ground truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>(MCC1, MRR)</td>
<td>0.5960</td>
<td>0.6262</td>
</tr>
<tr>
<td>(MCC1, FF1)</td>
<td>0.6095</td>
<td>0.6328</td>
</tr>
<tr>
<td>(MCC1, dMCC1)</td>
<td>0.6237</td>
<td>0.6409</td>
</tr>
<tr>
<td>(MCC1, dMCC1, FF1)</td>
<td>0.6237</td>
<td>0.6409</td>
</tr>
</tbody>
</table>

Symbolic representation capturing the main characteristics of the lead voice allows application of string matching techniques (e.g. Levenshtein distance)

Output

- symbolic representation capturing the main characteristics of the lead voice allows application of string matching techniques (e.g. Levenshtein distance)

Idea: exploit spatial arrangement of instruments and voices in the mix

Karaoke Filter

- removes center pan (information contained in both channels) by inverting one channel and mixing it together with the other into a mono signal:

 \[\text{output} = L - R \]

Requirements:
- stereo input signal
- lead voice (and possibly solo instruments) centered in the stereo mix
- instruments and backing vocals arranged out of center

Local Noise Filter: derives a local (i.e. continuously updated) power spectrum of frequencies from a noise signal \(N \) which can then be removed from the signal \(S \) (based on versions 1.34, Sep 23, 2006 and 1.39, Jul 27, 2007 of the NoiseRemoval effect by Dominic Mazzoni as part of Audacity)

Bandpass Filter (300-1000Hz): keeps only frequency range of the input signal \(S \) that is relevant for human voice (lower bound is higher to filter out the bass guitar that might be in the center as well)